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ABSTRACT

Topology provides both strong and principled invariants
as well as defines spaces of deformability. We extend a
method for segmentation and deformation of fixed length
audio sample data to the case of streaming data. This
method uses sublevel set persistent homology to segment
audio data into extremal and monotone blocks called box
snakes, where monotones can be deformed so long as mono-
tonicity is preserved. We employ surgery on box snakes to
realize shifts of data. We discuss this process with respect
to both linear and circular domains. This allows box snake
structures to be matched with the topologies of other audio
signal processing techniques such as the Discrete Fourier
Transform which naturally operates on a circular topology.

1. INTRODUCTION

Sound synthesis and audio manipulation methods operate
on a space of variability of sound under certain chosen
properties. In recent years, topological properties have
been proposed as useful for providing both variability and
specific rigidity to sound manipulation.

One such topological method for audio manipulation was
recently proposed using sublevel set persistent homology
[1]. Extrema (minima, maxima) in audio signals are points
of topological change with regard to the “height” or level
of the audio data. It turns out that monotone sequences
do not change the topology, and hence can be deformed
as long as they stay monotone. Previous work [1] was lim-
ited to a fixed length sequence of audio samples, and hence
was applicable to looped audio with a static data buffer.
The purpose of the work described here is to show how
this limitation can be removed and hence make the method
amenable to streaming audio data.

This paper belongs to a growing body of work that ex-
plores topological methods for sound synthesis, either by
giving more flexibility to existing synthesis methods [2]
or by providing direct deformation strategies of oscilla-
tors [3]. Topology describes properties that on the one
hand are global, and therefore very robust, and on the other
hand local, and on that level flexible. Audio signals can
be constructed [1] that allows principled deformation rules
that respect global properties while exploiting, in a well-
defined way, local deformability. One can fruitfully think
of topological properties as describing a kind of invariant
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of the signal under deformations. The approach proposed
in [1] is attractive because it operates directly on audio sig-
nals, which distinguishes it from previous methods which
utilize geometric settings that are higher dimensional, such
as oscillators embedded in a plane [3], or winding paths on
the surface of a torus in three dimensions [2].

The central data structure of [1] consists of a block-wise
subdivision called box snakes. Box snakes segment the au-
dio data in such a way as to identify extrema, as well as
segment monotone sequences, which describes the space
of deformability of audio signals. This can be viewed as
a topology-preserving technique, with the topology under
consideration being described by sublevel set persistent ho-
mology [4]. In this paper, we show that a set of surgery
procedures on box snakes allows one to implement a stream-
ing realization of the algorithm. Furthermore we explore
streaming linear and circular sliding buffers and their re-
spective properties. It is well known that the Discrete Four-
ier Transform (DFT) involves circular convolutions [5, 6],
which can be explained topologically via Pontryagin dual-
ity [7, 8].

Circular buffers for sublevel set persistent homology has
nice symmetry properties, which leads to natural segmen-
tation of periodic functions within a window and avoids
artifacts due to boundary effects. This makes it an attrac-
tive choice for streaming and windowed processing. Any
circular domain can be converted into a linear domain with
a single cut surgery. This relationship allows the combina-
tion of linear and circular domains in processing pipelines
involving box snakes 1 .

2. RELATED WORK

This work is most directly related to work on dynamically
updating persistence information [10], which assumes that
extrema are isolated. This means that no two extrema share
the same level, and that extrema only occupy one sample
and do not form flat regions. This restricted class of func-
tions are known as Morse functions. To ensure isolated
extrema, samples are either perturbated, or tie-breaking
rules are employed to disambiguate extrema at the same
level. However, audio data is not guaranteed to have non-
identical extrema in its data. In fact, a constant function,
representing silence, as well as any sinusoidal function has,
by definition, multiple extrema at the same value. Further-
more, flat extrema can occur in audio data. Square waves
are a common synthetic example. Hence it is desirable
to require none of the typical restrictions of Morse func-
tions. These restrictions can be overcome [1], and this is

1 Our discussion will be self-contained. A detailed discussion of the
underlying theory can be found in [9].
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discussed in detail in [9]. Another common assumption in
prior work concerns bar code construction rules. The dom-
inant rule, as used in [10] is well known as the elder rule. It
says that when two (or more) connected components merge
at a maximum, the first created component continues while
the other “dies”. This corresponds to the lowest minimum
associated with the connected components. This rule is,
however, arbitrary and can be replaced by other rules. As
the lowest minimum and the global maximum can be arbi-
trarily placed in a sequence of audio, the elder rule leads
to barcode updates that do not match the streaming pat-
tern, and, in the worst case, can lead to bars that span the
whole length of a sequence. This may cause the bars to
re-arrange every streaming update, and thus lead to erratic
barcode patterns that make it hard to interpret data.

To address this problem, we propose the use of circular
domains together with a local barcode construction rule to
ensure a notion of temporal coherence of a barcode. Our
way to update an auxiliary data structure also differs, in
that we use the box snake structure [1, 9] rather than the
multi-pane windows 2 structure proposed in [12] and dy-
namically updated in [10].

This work contributes to the increasing body of work in
topological methods in signal processing [13, 14] and its
applications to sound synthesis [2, 3], digital signal pro-
cessing [15, 16, 17], and the design of musical interfaces
[18, 19]. Numerous applicable techniques have been pro-
posed for general time series data such as topological anal-
ysis based on embedding data in higher dimensional spaces
[20]. This has been used for differentiating a clarinet from
a viola tone [21], and detecting wheeze sounds [22].

In this paper, we contribute a streaming extension of pro-
cessing of audio data based on snake boxes, surgery of
snake boxes, and deformation on streaming audio. A par-
ticular contribution of this work is the interconnection of
sublevel set persistence of audio data with discrete Fourier
transform processing (DFT/FFT). This extends the static
looped case frequency-domain manipulations previously
considered [1]. Finally, we discuss examples of stream-
ing single-stage as well as multi-stage audio processing
pipelines.

3. LINEAR AND CIRCULAR DOMAINS

Conventionally, audio data is thought of as linearly or-
dered with respect to time. Yet perception of audio appears
to parse repetition [23], and especially in the context of
fast convolutions and other techniques relying on the Fast
Fourier Transform (FFT) as perhaps the most important
variant of the Discrete Fourier Transform (DFT) the circu-
lar (also sometimes called cyclically ordered) domains also
need to be considered, and the relationship of linear pro-
cessing of short-time Fourier transforms (STFT) and FFTs
became part of the construction. The relationships between
an infinitely extended linear domain and finite circular do-
main of DFTs is depicted in Figure 1. The figure depicts
the time-domain on the left, and the frequency-domain un-
der the appropriate Fourier transform on the right. Topo-
logically, the duality properties between transformed do-

2 This particular notion of window is not to be confused with familiar
notion of a window in digital signal processing [11]. They have different
definitions and serve unrelated purposes.

mains are known as Pontryagin duality [7, 8]. The key the-
orem of Pontryagin duality for this picture states that if the
domain (characterized as a topological group) is compact,
then the dual necessarily must be discrete and vice versa.
We will call this theorem the compact-discrete theorem.
Compactness has a technical definition, but for our pur-
pose, we will work with the intuitive notion that if a signal
domain extends to infinity, then it is not compact. Other-
wise, the signal domain is compact. For example, the real
line and the full set of integers are not compact. However,
the circle, a finite interval, and a finite cyclic group are all
compact.

We observe the compact-discrete theorem holds for all
domains depicted in Figure 1 (which contains four of the
six domains of signal processing of Steiglitz [6]). Infinitely
extended discrete audio data (top left) is not compact (as
it goes off to infinity), but is discrete. By the theorem,
the frequency domain must be compact, which we observe
being the case. The circle in the complex plane is compact.
If we discretize the frequency domain by only allowing a
discrete set, this automatically means that the time domain
needs to be compact as well. This leads to both time and
frequency domains of the DFT necessarily being compact,
which we see in the bottom two domains of Figure 1. This
is the topological reason why discrete Fourier transforms
necessarily lead to circular convolutions.

In practice, one does not encounter truly infinite sequences
of audio data. Instead, audio data are finite in length. This
introduces a notion of a starting point and an end point
of the linear domain, which differs from the infinitely ex-
tended non-compact discrete domain in that it is both fi-
nite and, due to the endpoints, has boundaries. It also dif-
fers from circular domains which do not have endpoints.
We will say that a sample, an extremum, or any other lo-
calized aspect of audio data is in the boundary if it con-
tains the first or the last sample of the finite linear domain
under consideration. We will be dealing with finite lin-
ear domains; hence, all our linear domains will have two
boundaries. In this paper, both linear and circular domains
will be discussed and we will see that circular domains can
be beneficial outside of considerations of discrete Fourier
transforms.
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Figure 1: Discrete time domains of signal processing after
Steiglitz [6]. Due to Pontryagin duality, topologically com-
pact domains are dual to discrete domains and vice versa.
Hence if both domains are discrete, they both also neces-
sarily need to be compact. This leads to the well known
property of the Discrete Fourier Transform necessarily in-
volving circular convolution.



Figure 2: Sublevel set persistent homology of a finite audio signal. As we raise the level line, more of the signal is included.
The connected component at each level (red) is depicted below the time series graph. At extrema, connected components
are created or merged.

4. SUBLEVEL SET PERSISTENCE

We rapidly review sublevel set persistence of discrete au-
dio data. For more details see [1, 9] 3 . Sublevel set persis-
tent homology computes the changes in connectivity as a
level set moves across the amplitude of discrete audio data.
The idea is depicted in Figure 2 4 . The figure shows a red
horizontal line. This line marks a level. A sublevel set is
a subset of the original sequence of samples such that a
sample is included if and only if its value is at or below the
level set.

We visualize a current sublevel set by a horizontal line-
graph that is depicted below the x-axis as copies of the
included sample without amplitude, but with their neigh-
borhood relationships depicted by connecting lines.

As the level moves from below the global minimum to
above the global maximum, the sublevel set changes. Steps
of this process are illustrated in Figure 2. Each subfigure
illustrates what happens when a local minimum or maxi-
mum is reached. Observe that mimima create a new con-
nected component in the sublevel set, while maxima, that
are not in the boundary, merge connected components. The
general insight that topology (here with respect to num-
ber of connected components) changes is core to Morse
theory as developed by Marston Morse [25] in differen-
tiable topology. The idea has been translated into compu-
tational settings in the context of the development of com-
putational and applied topology [26]. Morse theory is the
core idea that allows us to process digital audio data, even
if it breaks requirements of the original theory such as iso-
lated extrema and the ability to always define a non-zero
gradient. As shown in [1, 9], the restrictions of classical
Morse theory can indeed be removed without issue for dis-
crete sequential data, allowing us to use this theory in the
setting of discrete audio samples.

We will use the so-called barcode [27] as representations
of topological change. The barcode is a set of vertical bars
on the right of Figure 2. It keeps track when a connected
component is created at a minimum. This is the bottom
point of the bar. The bar extends to the level of a maxi-
mum where a connected component was merged with an-
other, hence the connected component associated seizes to
continue independently. Hence, each bar corresponds to
one minimum and one maximum. The global maximum
has a special status in that it connects all connected com-
ponents that are still separate into one. Technically, one bar
in the barcode is essential [28] in that it describes the final
connected component. We will not use that property here

3 Topology in digital audio is reviewed and motivated in greater detail
in tutorial lectures given at DAFx2022 and DAFx2023 [8, 24].

4 The figure is based on Figure 1 in [1], however, correcting an error
in the barcode.

and simply have the essential barcode end at the global
maximum. In fact, barcodes are not the primary object of
this paper. We are primarily concerned with manipulations
such that barcodes are not altered. They are a means to
visualize the topological invariants that we use to segment
regions of deformability. We will discuss their behavior
under streaming updates of audio data in Section 10.

5. BOX SNAKES

A box snake is a segmentation of a finite block of audio
data into regions of extrema, and regions of monotone se-
quences between them [1]. Box snake will refer to the
whole structure, while we will call individual segments ei-
ther a snake box or just a box. Each box consists of a start
and end sample, the range of amplitudes permissible inside
the box. The name box snake is an extension of the term
snake introduced when studying alternating extrema [29].
Alternating extrema are natural in our setting because for
one-dimensional audio data a minimum necessarily needs
to follow a maximum and vice versa. Box snakes capture
more information because the monotones between extrema
are also represented in the data structure. Directionality
differentiates between individual boxes. Monotones can
be either ascending or descending, and extrema can be ei-
ther minima or maxima. It will be convenient to be able
to identify if two extrema are the same without specifying
if it is a minimum or maximum. For this purpose we refer
to “extrema of a given type”, where type can be either an
minimum or maximum. There are a wide range of dual-
ity results for extrema and monotones in digital audio [9],
hence for many arguments, it is more important to know if
the extremum is the same or differs rather than what spe-
cific type of extremum it is.

Sublevel set persistent homology can only change at lo-
cal minima and local maxima, with the caveat that maxima
which are in the boundary of a linear domain do not merge
connected components. This means that the box snake
structure segments audio data into areas that correspond
to potential topological change (extrema) and areas that do
not change the topology (monotone sequences and maxima
in the boundary). As long as monotonicity is maintained,
the boxes corresponding to monotone sequences can be
modified without changing the topology captured by the
sublevel set persistent homology [1, 9]. Monotone defor-
mations were realized using piece-wise linear monotonic
interpolations [1], though any monotonic deformation is
permissible. An example of a box snake for both linear
and circular audio data is shown in Figure 4. These two
domain types can be related to each other via surgery.
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Figure 3: Classification of surgery changes box snakes. Top row (a)-(f) shows glued cases, and bottom row (g)-(l) shows
cut cases. Colors indicate the type of box snake. Purple is a constant (both minimum and maximum), red is a minimum,
green is a maximum, cyan is an ascending monotone, blue is a descending monotone. The dashed vertical line indicates
the surgery position.

6. SURGERY OF BOX SNAKES

Topologically, one can think of changes to a domain as
surgical moves. Specifically, we can describe changes that
sever connectivity as a cut and those that create connectiv-
ity as gluing. In our settings, we are talking about split-
ting a larger sequence of audio samples into smaller ones,
or concatenating smaller sequences into a larger one. Fi-
nally, we are also interested in taking a sequence of a given
length and gluing it into a circle by connecting the ends of
the sequence. This leaves the content and length of the se-
quence unchanged but changes its topology. Topologically,
a cut introduces two new boundaries. One on each side of
the cut. A gluing operation undoes this cut by connecting
these two boundaries.

Surgery on the domain also alters the associated box snake
decompositions. All possible effects of surgery on the snake
box structure are enumerated in Figure 3 with the top row
showing the glued condition for the matching cut condition
in the bottom row below it. Two general cases are cutting
between existing boxes and cutting within a box. If a cut
happens between two existing boxes, there are two basic
cases. (1) If the boxes are both extrema, then there is no
need to alter the box snakes (Figure 3(c) and 3(i)) unless it
happens to be a global step function (Figure 3(b)) in which
case both sides of the step become constant functions (Fig-
ure 3(h)). (2) If one of the boxes is a monotone (Figure
3(e)), then the monotone box needs to be modified (Figure
3(k)) using the following rules: The flat next to the cut be-
comes a box of the appropriate new boundary extremum,
while the remainder of the former monotone (if there is
one) is now a monotone shortened by the samples that now
form the boundary extremum. If the surgery occurs within
a snake box, we are guaranteed to end up with two boxes
that capture the two new boundary extrema (Figures 3(j)
and 3(l)). In the case of splitting a monotone, there may
also be reduced size monotones on one or both sides (Fig-
ure 3(l)), depending if there are audio sample sequences
left. In the case of within a flat extremum (Figures 3(d)),
one ends up with the extremum split into two boundary ex-
trema of the same type (Figures 3(j)). The rule also applies
to cutting a constant function (Figure 3(a) and 3(g)).

Observe that the number of updates to the snake box struc-

ture is constant with the number of snake boxes involved
in all cases. In some cases, no new box needs to be cre-
ated (Figures 3(b)(h), 3(d)(j)) to the case where one box is
replaced by at most four (Figure 3(f)(l)).

In this paper, we will use these rules for two purposes:
implement shifts in data while updating the box snake struc-
ture, and relating linear and circular domains via surgery.

7. LINEAR AND CIRCULAR DOMAINS OF AN
AUDIO WINDOW

Box snakes can be computed for both linear and circular
domains. Doing so illustrates that there are specific effects
that differ between these two domain types. The circular
domain is characterized by having no boundary. A linear
domain is characterized by having a first and a last sample
in the domain. Those two samples form the boundary of
the linear domain. Both types of domain are related by a
single surgery. Gluing the boundaries of a linear domain,
by making the predecessor of the first sample the last sam-
ple, and the successor of the last sample the first, one ar-
rives at a circular domain with identical samples in order.
If one cuts between adjacent samples of a circular domain
by removing the successor of one and the predecessor of
the other, one arrives at a linear domain. If the adjacent

Figure 4: Box snake segmentation for a linear (left) and a
circular (right) domain of a sinusoid. The linear domain
creates boundary extrema, while the circular segmentation
creates a phase-independent correct segmentation of the si-
nusoid. Notice that the boundary effects in this case also
creates an extra barcode. It can be viewed as an artifact
of broken periodicity. Box colors: increasing monotone
(cyan), decreasing monotone (blue), minima (red), and
maxima (green).
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Figure 5: A linear left-shift of a 128 sample sequence by a block of 16. First the original sequence is cut on the left and the
left side (dashed blue) is discarded. Then the remaining piece (dashed green) is glued on the right with a new sequence of
three samples (dashed red). Solid boxes are box snake segments. Notice that the shift requires a surgery of a monotone on
the left, and a glue next to an extremum on the right. To make this shift circular, it first needs to cut the circularity, perform
the shift, then glue the boundaries.

samples are the same as those used in the gluing described
above, this is the inverse process; otherwise, the samples
in the linear domain will be cyclically shifted depending
on the choice of the cut location. Using the associated box
snake surgery update from Figure 3 allows one to relate
box snakes between these two cases.

Topologically, the boundaries of the linear domain intro-
duce effects. Figure 4, which shows the box snake segmen-
tation of a discrete sinusoid assuming a linear domain (left)
and a circular domain (right). The linear case as boundary
extrema that do not relate to the periodic structure of the si-
nusoid and what should be one monotone slope through the
boundary has been split by boundary extrema into two sep-
arate monotonic segments. The circular case cleanly cap-
tures the extremal and monotone structure of the sinusoid
without these boundary artifacts. This effect then carries
over to topological analysis methods such as the sublevel
set persistence. Given that the right boundary extremum of
the linear domain is a minimum, it will create a connected
component, and hence a bar in the barcode. This bar is an
artifact of the linear domain (left) and is absent from the
circular barcode (right). Thus, there is an argument that if
a finite array is related to periodic data, circular domains
are preferable over linear domains.

As we have already seen, there is an immediate relation-
ship between the linear and circular topology of a domain
of audio data via a single cut/glue operation. Any further
cuts of a linear domain will produce two linear domains.
Hence, any subsequence of a circular domain, which can
be extracted surgically via two cuts, is again a linear do-
main.

Given that any subsequence of a circular domain is al-
ways linear, and of course any subsequence of a linear do-
main is linear, it is possible to always relate subsequences
even if there is a mismatch in the topology of the total
domain. This is the core property used to connect the
two concepts, which we will utilize in connecting circu-
lar buffers as can be useful for DFT-type computations,
and linear time-domain buffers used for streaming audio
to the DAC for playback. Even if one arrives at a linear
subsequence, one can in principle always ”circularize” the
sequence by a single glue operation.

8. REALIZATION AND EFFICIENCY OF SHIFTS
VIA SURGERY

Streaming audio depends on finite buffers, which are up-
dated based on new audio data arriving. Taking a finite to-
tal buffer length N , and an update of audio data of length
L that is shorter than the total buffer length. This amounts
to an L-shift. An example of the shift to the left of a buffer
of total length N = 128 and a shift length L = 16 is
depicted in Figure 5. The left side of the figure shows
the data before the shift, and the right side of the figure
shows the data after the shift. The blue dashed rectangle
indicates the block of audio samples to be removed due
to the shift, while the red dashed rectangle indicates the
new data introduced by the shift. If the length of the up-
dated audio is close to the total length of the buffer, it may
be most efficient to simply recompute the box snakes for
the whole buffer after each shift. However, if the shifted
data is substantially shorter, it becomes efficient to com-
pute the box snake structure only for the new data, and up-
date the changes to the box snake structure via the surgery
moves discussed in section 6. Given that surgeries only
need to touch a constant number of boxes, sublinear per-
formance relative to the full length of the audio sequence
can be achieved. In the example of Figure 5, the ratio of to-
tal buffer length to shift length is 8 : 1. Hence, one should
expect a performance gain close to this ratio by performing
surgery over brute force. If the buffer is circular, one addi-
tional cut before and glue after need to be performed, at an
additional constant cost relative to sample buffer size.

9. PRACTICAL BUFFER-BASE
ARCHITECTURES PIPELINE

Some forms of digital audio processing involve buffer sizes.
One such buffer size is usually chosen as part of audio
playback. The number of audio samples to be fed to the
audio hardware is fixed, usually to a power-of-two num-
ber. This is then reflected in the choices of APIs defined
for audio rendering. For example, the current WebAudio
standard defines an audio output buffer size - called ren-
der quantum - of 128 [30, 31]. For audio playback, it is
desirable to keep buffer sizes small to minimize or avoid
perceptible delay. While the specific details of time-delay
effects on perception are complicated [23], it is generally
accepted that delays less than 3 to 10ms is either imper-
ceptible or non-disruptive. This leads to buffer sizes of 128
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Figure 6: Short linear audio buffers in a pipeline that allows
for box snake deformations in both time and frequency do-
mains, and accommodates double buffering.

or 256 being deemed sufficient at 44.1 to 48 kHz sampling
rates in many practical application settings.

Other audio processing strategies can also involve their
own buffer or window sizes. For example, the most widely
used form of the Fast Fourier Transform also requires a size
that is powers-of-two [6]. However, the motivation behind
this specific buffer size differs from the one driving the size
of buffers for audio playback. For the Fourier transform, a
larger window size leads to a finer frequency resolution [6].
Although, the desired resolution is application dependent,
1024 to 8192 size buffers are frequently encountered for
many real-time applications, both smaller and larger sizes
are in use. Web Audio supports FFT sizes of 32 to 32768
[30].

Furthermore, different buffering mechanisms may have
different underlying topological considerations. Stream-
ing audio inhabits a sequential, ”linear” domain, while the
Discrete Fourier Transform (and hence the FFT) requires a
periodic (cyclically closed) domain. A classic example of
bridging both linear and circular domains is the case when
using the FFT for fast linear convolution via methods such
as overlap-add and overlap-save [5, 32]. However, even if
no FFT is involved, it can be beneficial to utilize a circular
buffer as a data structure of fixed length in signal process-
ing.

9.1 Example 1: Streaming Time-Domain Architecture

A simple architecture for time-domain deformations using
box snakes is depicted in Figure 6. It shows real-time in-
coming audio, which could be a microphone, streaming au-
dio media, or generative audio, here depicted with a length
of 128 samples and a larger circular buffer (here depicted
with a length of 1024 samples) on which we will com-
pute the box snake structure and allow time-domain audio
deformations. Playback is achieved by copying a subse-
quence into the audio output at the appropriate size. The
readout of the buffer for audio-playback does not require
any surgery. The depiction shows an offset between input
and output reflecting a double-buffering-type strategy.

Notice that the box snake structure can be initialized at
minimal computational cost if one starts from silence. The
buffer is initialized with a constant function (silence) for
which the box snake structure can be constructed without
inspecting the samples at constant cost independent of the
size of the buffer.
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Figure 7: Short linear audio buffers in a pipeline that allows
for box snake deformations in both time and frequency do-
mains, and accommodates double buffering.

9.2 Example 2: Streaming Time/Frequency-Domain
Architecture

The simple structure of Figure 6 can be extended as needed.
For example, it may be desirable to deform the audio data
in the frequency domain. An architecture that allows freq-
uency-domain manipulation as well as time-domain ma-
nipulations before and after the transforms is depicted in
Figure 7.

The architecture uses an audio-IO buffer size of 128 sam-
ples and an FFT size of 1024 reflecting an 8 : 1 ratio
matching the one illustrated in Figure 5. Instead of one
circular buffer of the time-domain case described in the
previous section, this architecture consists of three circu-
lar buffers. Hence, insertion cost will only ever be of the
order of the audio-IO size (in the illustrated example 128),
given that the cost of the surgery step to prepare the first
circular buffer is O(0). The box snake structure can then
be used to deform the time series [1]. We then transform
the circular buffer to construct a frequency domain repre-
sentation of the audio of the given length. For purposes of
deformation, the box snake structure is computed over the
whole domain. Given that the spectral changes can be (and
in general are) global, the complete box snake structure
has to be recomputed at each shift, hence requiring linear
computation cost. This is still below the transform cost of
the FFT of O(N logN). The inverse FFT (iFFT) then re-
turns the deformed frequency data (O(N logN) back into
time-domain signal in which one could decide to allow a
further time-domain deformation, requiring another global
snake box construction. Observe that deformations in the
frequency domain are substantially more expensive than
the pure time-domain case (which is sublinear), but the ex-
tra cost is dominated by the cost of computing the FFT and
its inverse at O(N logN). The topology and snake box
construction match the circular topology imposed by the
FFT.

10. BARCODE CONSTRUCTION FOR
STREAMING

Barcodes capture the topological invariant around which
we deform our audio signals. Hence, ease of interpretabil-
ity and coherence with progressing data are of great im-
portance. Shifts remove some minima and maxima while
introducing new ones. Hence, the barcode representation
of sublevel set persistent homology needs to be dynami-
cally updated in shifting applications.

Barcodes denote the creation of connected components
with the heights of minima, and the death of them by the
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Figure 8: Barcodes from local shift rules for (a) linear and (b) circular domains. Red bars reaching the global maximum, blue
is a bar at the global maximum due to the topology being linear. Green is an example of a bar that had to be reconfigured
in the linear case but remains unaltered in the circular case. The global maxima forces a local orientation change in the bar
code rule in the linear case, forcing the reconfiguration of bar codes when the global maximum changes due to shifts.

heights of maxima. However, given that maxima merge
connected components, there will be one connected com-
ponent per maxima that continues, while all other con-
nected component ends at that maximum. The decision
to resolve which prior connected components merged at a
maximum continues needs to be resolved by a rule that we
will call barcode construction rule 5 As we have already
seen, some barcode construction rules like the elder rule
can span the full length of an audio sequence and lead to
frequent updates of the barcode. This creates erratic bar-
code updates that are not clearly related to any pertinent
information for audio analysis.

This problem can be overcome by using a circular topol-
ogy. Due to the absence of a boundary, it is easy to see
that audio data on a circular topology are either constant
or have for each minimum an opposite maximum both to
its left right (and vice versa). Finally, because minima and
maxima necessarily need to alternate, we get that we have
the same number of each. Hence, we can always associate
a minimum with a neighboring maximum, either to the left
or to the right. And there is no exception for maxima in
the boundary because there is no boundary. Given that all
minima create a connected component, and in this case all
maxima merge connected components, we are done. A
local strategy of constructing barcodes is possible in the
circular case.

Attempts at constructing local rules for the linear case re-
veal that they have to reorient at one global maximum (flip
from right to left, or vice versa) [9]. This means that if
the global maximum changes, such as due to being shifted
out or a new global maximum being shifted in (or both),
the local direction in which minima and maxima are con-
nected will have to change. There is no way to achieve
non-altering behavior of barcodes in general on linear do-
mains. This effect is illustrated in Figure 8. Each case
shows a shift by half the total sample size from the left to
the right. The left case 8(a) shows the linear domain. The
effect is that at a global maximum connected components
from both the left and right are necessarily merged because
they are separated by boundaries. A local barcode con-
struction only connects neighboring extrema. Due to the
above effect the immediate neighbors of the global maxi-
mum requires barcodes from the immediate minima to the
left and right. Any subsequent barcode must use the next

5 This topic is covered more extensively in [9]. Here we will limit
ourselves to streaming applications.

maximum and merge with the unused minimum next to it.
Hence on the left side of the global maximum we max-min
pairs grow leftwards, while on the right side of the global
maximum the max-min pairs grow rightward. When the
global maximum changes, it requires that all barcodes are
constructed as above, which can be flip between leftward
pairing to rightward pairing.This effect can be seen on the
example of the bar color coded in green.

In the circular case, 8(b) this phenomenon does not exist.
At a global maximum, in the circular case, the last merge
will close the domain with itself, hence instead of produc-
ing an extra bar, there is just one capturing the final clo-
sure. Thus, we have one less bar reaching the global max-
imum in the circular case. Notice also that there is nothing
that forces reorientation. Hence, the green bar in this case
remains unaltered. For this reason, it is recommended to
use circular domains to achieve locally temporally coher-
ent barcodes in shifts.

11. CONCLUSIONS

In this paper, we showed how existing audio deformation
techniques based on sublevel set persistent homology [1]
can be extended for streaming audio applications. The cen-
tral strategy involves the use of surgery (cuts, glues) on
the box snake structure to realize finite length shifts. We
showed that linear buffers exhibit artifacting with respect
to periodic data in the box snake decomposition due to ef-
fects of the boundary. On the other hand, circular domains
are better behaved since they avoid boundary artifacts. Ad-
ditionally, circular domains also arise as the topology of
the Discrete Fourier Transforms (DFT), hence, making the
joint use convenient. Basic processing architectures have
been proposed that allow time and time/frequency-domain
deformation of audio data at cost equivalent to that of two
FFT transforms. Pure time-domain processing can be per-
formed at linear or better cost. We also showed that circu-
lar topologies allow for temporally coherent behavior for
barcode representations which track the topological changes
in the audio signal.

Work on sublevel set persistence on digital audio is still
largely unexplored. For example, little is known about
the precise relationship of sublevel set persistent homology
when time and frequency-domains are considered together.
The techniques discussed here and in [1] can form the ba-
sis for audio analysis, which also has not been explored in
any detail yet. These are areas for future work.
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